

A Brief Review on Cardioprotective Medicinal Plants

Miss. Swati A. Pirdhankar^{*}, Dr.Nilofar.S. Naikwade, Dr.Tabassum.S.Shikalgar, Sudhir S. Patil

Appasaheb Birnale College of pharmacy Sangli, Maharashtra. India-416416

Date Of Submission: 15-05-2021	Date Of Acceptance: 26-05-2021

ABSTRACT: Since the beginning of human evolution, Plants have been used to relieve human suffering since the dawn of humanity, and it has been documented that plants have been used for medicinal purposes for thousands of years. Natural bioactive compounds, called phytochemicals, are derived from medicinal plants, vegetables and fruits which are used to combat various diseases. Exploration of plant biodiversity for medicinal and pharmacological potentials is criticalcardiovascular abnormalities are treated with a number of substances derived from a variety of plant species. A number of bioactive compounds found in cardioprotective plants, such as antioxidants, flavonoids, anthocyanin, tannins, ellagic acid, terpenoids, carbohydrates, have been shown to improve cardioprotection and thus reduce the risk of cardiac disorders. The purpose of this review article is to present information on the use of medicinal plants, especially for the treatment of cardiac diseases, as well as to investigate the molecules/phytochemicals as plant secondary metabolites for their cardioprotective potential.

Key words:Cardioprotective, phytoconstituents, cardiotoxicity, myocardial infarction.

I. INTRODUCTION:

Heart attack, also called myocardial infarction (MI), and related complications are the leading causes of death worldwide. The use of antioxidants present in herbal plants is increasing as protecting agents against a number of cardiovascular diseases. by eliminating the generation of free radicals phytochemical agentsfrom natural sources have decreased the risks of heart disease and gained fundamental importance in modern drug systems^[1] Cardioprotection include "all mechanisms and means that contribute to the preservation of the heart by reducing or even preventing myocardial damage". If this definition is accepted then Cardioprotection includes primary and secondary prevention of coronary heart diseases, cardiosurgical procedures, and thrombolysis in

acute myocardial infraction. "Cardioprotection" as "Preservation of the heart" has also great theoretical implication^[2]

Herbal medicine plays an important role in rural areas, and several locally produced medicines are still used as home remedies for different ailments. The increasing use of traditional therapies requires stronger scientific evidence for the underlying principles of therapies and for the efficacy of drugs. Herbal medicine remains the mainstay of around 75% to 80% of the world's population, mainly in developing countries, for primary health care due to better cultural acceptability, better compatibility with the human body and fewer side effects. Furthermore, traditional knowledge is the most affordable and accessible method available for the treatment of various diseases^{[3].}

The accumulation of phytochemical, biological and clinical data during the last decade of the 20th century revealed that herbal remedies are the emerging option for the treatment of various ailments. Tulsi, Arjuna, Amla, Turmeric, Neem tree, Winter cherry are Medicinal herbs which are recognized to have cardioprotective potential. Large amount of important phytochemicals such as antioxidants, polyphenols, tannins, cardiac glycosides, saponin, ellagic acid, flavonoids, alkaloids identified from plant sources by scientists^[1].

Biochemical reactions or signaling molecules produce some ROS (Reactive oxygen species) as by-products such as superoxide and hydrogen peroxide. superoxide, hydrogen peroxide, singlet oxygen, peroxyl radicals, hydroxyl radicals, and peroxynitrite are some of the antioxidants which protect cells against the damaging effects of ROS. When ROS-generating reactions are overly activated, pathological amounts of ROS are released to create an imbalance between antioxidants and ROS. Oxidative stress has been linked to cardiovascular diseases, diabetes, lung disease, cancer, and other degenerative diseases . Antioxidants present in herbal plants can safeguard

patients against these diseases by increasing the total antioxidant defense system of human body. Many studies has proved the efficiency of herbal antioxidants^{[4].}

plants Medicinal enriched with polyphenols, possessing free radical scavenging potential, may reduce the risk of heart diseases because of inverse relationship between cardiovascular diseases and intake of polyphenols^{[5].} Free radicals are reactive species generated in the body as a result of many endogenous (metabolic pathways) and exogenous (environmental pollution, pesticides, and exposure to radiations) source^[6] The base of pathogenesis of cardiovascular diseases involves cell damage, necrosis, and apoptosis with accumulation of radicals and oxidative stress. accumulation of radicals is due to the influence of different environmental factors increase the level of free radicals and cells are unable to work efficiently

against the free radicals^{[7].} Many antioxidants like Vitamins C and E and plant polyphenols are efficient tools in oxidative stress and cardiovascular disorders as potential therapeutic agents^{[8].}

Herbal plants with cardioprotective activity:

Medicinal plants are used to prepare many drugs, but the Chemical constituents present on original plant material are more efficient with less side effects than their pharmaceutical derivatives. Variety of plants and their bioactive compound are well known for their minimal side effects, providing alternative therapeutic effect against cardiac diseases. Some of the plants having cardioprotective molecules/agents are given below, and the plants having cardioprotective effect against cardiotoxicity induced by various agents are given in Table.

Sr. No	Comm on name	Plant Name	Family	Chemical constituents	uses	Studies	Result.	Refer ences
1.	Tulsi	Ocimum sanctum	Lamiace ae	0.7% volatile oil comprising about 71% eugenol and 20% methyl eugenol phenolic compounds (antioxidants) such as cirsilineol, circimaritin, isothymusin, apigenin and rosameric acid, flavonoids,	Anticanc er, Antioxid ant activity, Antihype rtensive, Antimicr obial, Antifertil ity, Antidiabe tic, Antioliabe tic, Antipyret ic, Antiarthri tic, Anticoag ulant.	Isoproteren ol-induced cardiotoxic ity in rats.	The present study pre- and co- treatment of Ocimum sanctum exhibited significant protection against ISO induced histopatho logical and biochemic al canges. Our data indicates that Os may provide potential therapeuti c value in treatment of MI.	[9,10]

2	Anivers	Tom:	Combust	Tuitour	Condiana	Iconnetaria	The	[11]1
2.	Arjuna	Terminali	Combret	Triterpenoid	Cardiopr	Isoproteren ol-Induced	The	[11,1
		a arjuna.	aceae	s, Glycosides,	otective, Antiarrhy	Cardiotoxi	present study has	2,13]
				Flavonoids,	thmic	city in	demonstra	
				Tannins,	Cardiac,S	Rats.	ted for the	
				Minerals,	timulant,	Rats.	first time	
				alkaloids,	Antiangi		that oral	
				steroids,	nal		administra	
				phenols.	Antiosteo		tion of T.	
				phonoisi	porotic,		arjuna	
					Wound		bark	
					healing		extract	
					Anti-		prophylact	
					arthritic		ically as	
					Anti-		well as	
					inflamma		therapeuti	
					tory,		cally not	
					Antacid		only	
					Antiulcer		reduced	
					ogenic.,		myocardia	
					aphrodisi		1 injury	
					ac,		but also	
					antidysen		markedly	
					teric,		improved	
					purgative and		cardiac function	
					laxative.		of ISO-	
					laxative.		induced	
							CHF rats.	
3.	Moonse	Tinospora	Menispe	alkaloids,	Hypoglyc	isoprenalin	The	[14,1
	ed	cardiofoli	rmaceae	diterpenoid	emic,	e-induced	present	5,16]
		а		lactones,	anti-	cardiotoxic	study	
				glycosides,	inflamma	ity in rats.	indicated	
				steroids,	tory,		that the	
				sesquiterpen	hepatopr		prior	
				oid,	otective,		administra	
				phenolics,	immune-		tion of	
				aliphatic-	modulato		methanoli	
				compounds	r activity, anti-		c extract of	
				and polysacchari	oxidant,		oi Tinospora	
				des	antitumo		cordifolia	
				Flavonoids,	ur		attenuates	
				saponins,	activity,		isoprenali	
				phytosterols,	Antineop		ne	
				antioxidant.	lastic,anti		induced	
					fertility		MI. The	
					activity,		cardioprot	
					anti-		ective	
					oxidant,		activity of	
					anti-		Tinospora	
					hypergly		cordifolia	
					cemic,		probably	
					anti-		related to	

	1	1			1		·/. 1·1·.	
					neoplasti		its ability	
					c, anti-		to strongth on	
					stress,		strengthen	
					anti-dote, anti-		the myocardia	
					spasmodi		1	
					c, anti-		membrane	
					c, anti- pyretic,		by its	
					antiallerg		membrane	
					ic, anti-		stabilizing	
					leprotic,		action.	
					anti-		action.	
					inflamma			
					tory.			
4.	Amla	Emblica	Euphorb	vitamin C,	Hypolipi	isoproteren	The	[17,
		officinal	iaceae	minerals and	demic,	ol-induced	findings	18]
				amino acids.	hypoglyc	cardiotoxic	of present	
				Antioxidant,	emic,	ity in rats.	study	
				tannoids,	anti-	-	demonstra	
				tannins and	inflamma		te that E.	
				flavonoids.	tory,		officinalis	
					hyperlipi		significant	
					demia		ly	
					and		suppresse	
					diabetes,		d	
					cardiopro		oxidative	
					tective.		stress by	
							improving	
							endogeno	
							us	
							antioxidan	
							t and	
							restoring	
							hemodyna mic and	
							left	
							ventricular	
							contractile	
							function	
							parameter	
							s impaired	
							by ISP-	
							induced	
							MI.	
							Preserved	
							histoarchit	
							ecture of	
							myocardiu	
							m further	
							evidenced	
							myocardia	
							1	
							salvaging	
							activity of	

							F	
5.	Oleande r	Nerium oleander	Apocyn aceae	tannic acid, oleanolic acid, uzarigenin, neriodorein, oleandrose, karabin, neriodin, nerium D, nerium F, oleanolic acid, digitoxigenin, gitoxigenin, neriantin, odoroside, adyresin, ursolic acid, oleandrin, scopoletin, oleandrigeni n, 16-acetyl gitoxigenin, deacetylolea ndrin, and	Cardiopr otective, epilepsy, CHF.	isoproteren ol-induced cardiotoxic ity in rats.	E. officinalis. cardioprot ective potential of NO (Nerium oleander) flowers in rats using isoprotere nol for the induction of myocardia l oxidative stress and found good cardioprot ective activity of this plant.	[19,2 0]
6.	Slender amarant h	Amaranth us viridis	Amarant haceae	dambonitol. Amino acids,Saponi ns, tannins, phenols, flavonoids, Alkaloids,car diac glycosides, steroids, triterpenoids.	Anti- inflamma tory, antihepat otoxic, anti- ulcer, hepatopr otective, anti- hypergly cemic, analgesic, anti- diabetic, cardiopro tective.	isoproteren ol-induced cardiotoxic ity in rats.	The present finding have demonstra ted that the cardioprot ective effect of A. Viridis in ISO induced oxidative damage may be due to augmentat ion of the endogeno us antioxidan t and inhibition of lipid	[21,2 2]

							peroxidati	
							on of	
							membrane	
							•	
7.	Maiden	Ginkgo	Ginkgoa	flavones	g	isoproteren	Present	[23]
	hair tree	biloba	ceae	glycosides,	antioxida	ol-induced	finding	
				flavonol,	nts,	cardiotoxic	study the	
				ascorbic	antimicro	ity in rats.	Ginko	
				acid,	bial, anti-	•	biloba	
				diterpen	inflamma		phytosom	
				lactones,	tory,		e exerts its	
				catechin,	memory		cardioprot	
				sesquiterpen	enhancer,		ective	
				es, resins,	hepatopr		effect by	
				essential	otective,		stabilizing	
							the	
				oils, tannins, carotenoids,	antidepre			
				,	ssant,		myocardia	
				quercetin,	anticoagu		1	
				and	lant, anti-		membrane	
				myricetin.	ulcer,		. The	
					cytotoxic,		membrane	
					antiaging,		stabilizing	
					and		activity of	
					antistress		ginko	
					activitie		biloba	
							may due	
							to	
							augmentat	
							ion of	
							basal	
							endogeno	
							us	
							antioxidan	
							ts, which	
							in turn	
							increase	
							the	
							myocardia	
							liyocardia 1	
							antioxidan	
							t reserve	
							and	
							strengthen	
							the	
							defense	
							mechanis	
							m	
							operating	
							in the	
							myocardiu	
							m.	
8.	Roselle	Hibiscus	Malvace	Tannins,	Antihype	isoproteren	Hibiscus	[24,2
5.		sabdariffa	ae	saponins,	rtensive,	ol-induced	sabdoriffa	5]
		Succuring		phenols,	antioxida	cardiotoxic	show a	ι. τ
L	I	1	1	riviois,	unitoxiuu	curdiotoxic	5110 W u	

				glycosides, alkaloids, and flavonoids.	nt, and cardiopro tective.	ity in rats.	potential in protecting cardiac cells from ISO induced MI proven by lowering the level of oxidative stressmark ers, normalizin g the GSH antioxidan t enzyme and the structural damage of heart tissue. The phenolic content in HPE(Poly phenol- rich extract)+ porobably trapped the free radicals and reduced the lipid peroxidati on	
							-	
9.	pomegr anate	Carolus linnaeus	Lythrac eae	flavonoids, phenolic compound, ascorbic acid, citric acid, Ellagic acid, Anthocyanin , gallic acid.	Antimicr obial, cardiopro tective, Anti- inflamma tory, anti- obesity, anti- tumoral.	Doxorubici n-induced cardiotoxic ity in rats.	It can be concluded that whole fruit extract of pomegran ate has the ability to reduced stress in DOX- treated	[26]

DOI: 10.35629/7781-0603460480 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 466

10. Drumsti ck tree Moringa oleifera M Moringa case tannins, ceae Anticane angonins, alkaloids, terpens, starbolydrate Anticane or, anti-induced antipyeti c, and antipyeti s, flavonoids, and cardiac Doxorubici inflamma tory, cardiotoxic DOX [27] 10. Drumsti ck tree Moringa oleifera M Moringa ceae tannins, alkaloids, terpens, s, flavonoids, and cardiac Anticane inflamma tory, cardiotoxic Doxorubici cardiotoxic DOX [27] 11. Harrishi and cardiac c, and and cardiac antipyeti c, and and cardiac Doxorubici inflamma tory, cardiotoxic Dox Dox 11. Harrishi and cardiac c, and and cardiac antipyeti c, and and cardiac Teres. Antiprolif 11. Harrishi and cardiac Harrishi and cardiac Harrishi and cardiac Harrishi and cardiac Harrishi and attenuate 11. Harrishi and cardiac Harrishi and cardiac Harrishi and attenuate Harrishi and attenuate Harrishi and attenuate Harrishi and attenuate 11. Harrishi and attributed Harrishi and attributed Harrishi and attributed Harrishi and attributed Harrishi and attributed 11. Harrishi and attributed Harrishi and attributed Harrishi and attributed	r	1	1			-	-		
10. Drumsti ck tree Moringa oleifera M Moringa ceae tannins, saponins, alkaloids, terpenes, starbolydrate Anticane er, anti- inflamma tory, cardioprot Doxorubici cardiotoxic cardiotoxic DOX- cardiotoxic 10. Kree oleifera M ceae antionanti alkaloids, terpenes, starbolydrate Anticane er, anti- inflamma tory, cardioprot Doxorubici cardiotoxic DOX- cardiotoxic DOX- cardiotoxic 11. Antisane Anticane Doxorubici inflamma Doxorubici cardiotoxic Doxorubici cardiotoxic 12. Antisane and cardioprot cardioprot cardioprot 13. Antisane cardioprot cardioprot cardioprot cardioprot 14. Antisane and cardioprot cardioprot anti- ratical 15. Antisane and cardioprot cardioprot and 15. Antiperior and antical scavengin g 16. Antiperior and antical scavengin g 16. Antiperior and antical scavengin g 17. Antiperior and at									
Image: state in the state i									
ome ome action. action. 10. Drumsti Moringa oleifera M tannins, ceae tannins, alkalois, terpenes, carbohydrate Antican er, anti- inflamma Doxoubici induced cardiotoxie Doxoubici induced Torusti induced Torusti inflamma Doxoubici eratiotoxie Torusti inflamma Torusti infl									
10. Drumsti ck tree Moringa oleifera M Moringa ceae tannins, saponins, alkaloids, terpenes, carbohydrate s, flavonoids, and cardiac Anticanc er, anti- inflamma tory, antipyreti DOX- induced cardioucoi city is related to oxidative [27] 10. Drumsti ck tree Moringa oleifera M Moringa ceae Anticanc sploying Doxorubici inflamma and cardiac Doxorubici cardioucoi cardiopro tective. DOX- induced [27] 10. Sploying Sploying Sploying Sploying Sploying Sploying 10. Sploying Sploying Sploying Sploying Sploying Sploying 11. Sploying Sploying Sploying Sploying Sploying Sploying 12. Sploying Sploying Sploying Sploying Sploying Sploying 13. Sploying Sploying Sploying Sploying Sploying Sploying 14. Sploying Sploying Sploying Sploying Sploying Sploying 14. Sploying Sploying Sploying Sploying Sploying Sploying 15. Sploying Sploying<									
ck tree oleifera M ceae saponins, alkaloids, terpenes, carbohydrate s, flavonoids, and cardiac glycosides. eritike s, flavonoids, glycosides. eritike tective. eritike s, flavonoids, cardioprot tective. eritike s, flavonoids, cardioprot eritike s, flavonoids, cardioprot eritike s, flavonoids, cardioprot eritike s, flavonoids, eritike s, flavonoids, eritike e									
alkaloids, terpenes, carbiotydrate s, flavonoids, and cardiac glycosides. and cardiac glycosides. and cardiac cardiopro tective. anti- initiation, and free radical scavengin g properties of MO may boost myocardia l integrity and and attenuate the cardiaca toxicity. MO has shown to be cardiaca toxicity. MO has shown to be cardiaca toxicity. The current study s	10.			Moringa					[27]
terpenes, carbohydrate s, flavonois glycosides. tective. tective. tective. terpenes, carbohydrate s, flavonois tective.		ck tree	oleifera M	ceae					
carbohydrate s. flavonoids. and cardiopro glycosides. glycosides. craine glycosides. craine anti- initiation, and free radical scavengin g g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potentially useful						inflamma			
s, flavonoids, and cardiae glycosides. cardiopro tective. Antiprolif erative, anti- initiation, and free radical scavengin g properties of MO may boost myocardia 1 integrity and attenuate the cardiae toxicity. MO has shown to be cardioprot ective, which may be attributed to is potent antioxidan t to the cardioprot ective, which may be attributed to is potent antioxidan t to the cardioprot ective, which may be attributed to is potent antioxidan t the cardioprot ective, which may be attributed to is potent antioxidan t the cardioprot ective, which may be attributed to is potent antioxidan t the cardioprot ective, which may be attributed to is potent antioxidan t t the current study suggests that MO may be attributed to is potent antioxidan t t the current study suggests that MO may be considered as a potentially useful							ity in rats.		
and cardiac glycosides. and cardiac glycosides. anti- anti- initiation, and free radical scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardiac toxicity. MO has shown to be cardiac toxicital potent attributed to is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib is potent attrib					carbohydrate	antipyreti			
glycosides. tective. Antiprolif erative, anti- initiation, and free radical scavengin g g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to is potential attributed to cardioprot ective, which may be attributed to cardioprot ective, which may be attributed to is potent antioxidan t potent antioxidan t suggests that MO may be considered as a a potentially useful					s, flavonoids,			oxidative	
erative, anti- initiation, and free radical scavengin g properties of MO may boost myyocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardiac toxicity. MO has shown to be cardiac toxicity. Suggests that MO may be attribued to suggests that MO may be considered as a potentially useful					and cardiac	cardiopro		stress.	
anti- initiation, and free radical scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiae toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t potent attoixidan t t potent attoixidan t t potent attoixidan t t potent attoixidan t t potent attoixidan t t potent attoixidan t t potent attoixidan t t potent attoixidan t t t t t t t t t t t t t t t t t t t					glycosides.	tective.		Antiprolif	
initiation, and free radical scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as as potentially useful								erative,	
and free radical scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity, MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be attributed to its potent antioxidan t properties. The current study suggests that MO may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a a potentially useful								anti-	
radical scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent ant attributed to its potent ant attributed to its potent attributed to its potent ant attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed its study suggests that MO may be considered as a potentially useful								initiation,	
radical scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent ant attributed to its potent ant attributed to its potent attributed to its potent ant attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed to its potent attributed its study suggests that MO may be considered as a potentially useful									
scavengin g properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be									
groperties and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to is properties. The current study suggests that MO may be considered as as as as considered as as as as as as as as astal potentially useful									
properties of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ecctive, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
of MO may boost myocardia l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t t properties. The current study suggests that MO may be considered as a potentially useful								properties	
myocardia i integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
myocardia i integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								may boost	
l integrity and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
and attenuate the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
the cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
cardiac toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								attenuate	
toxicity. MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								the	
MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								cardiac	
MO has shown to be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								toxicity.	
be cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								MO has	
cardioprot ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								shown to	
ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								be	
ective, which may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								cardioprot	
may be attributed to its potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
Image: state of the state								which	
Image: state of the state								may be	
potent antioxidan t properties. The current study suggests that MO may be considered as a potentially useful									
antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								to its	
antioxidan t properties. The current study suggests that MO may be considered as a potentially useful								potent	
t properties. The current study suggests that MO may be considered as a potentially useful									
The current study suggests that MO may be considered as a potentially useful									
The current study suggests that MO may be considered as a potentially useful								properties.	
study suggests that MO may be considered as a potentially useful									
study suggests that MO may be considered as a potentially useful								current	
suggests that MO may be considered as a potentially useful									
that MO may be considered as a potentially useful									
may be considered as a potentially useful									
considered as a potentially useful									
as a potentially useful									
potentially useful									
useful									
	I.							candidate	

		1					:	
11.	Arogya pacha	Trichopus zeylanicus	Trichpo daceae	Alkaloids, glycosides, flavonoids, steroids, tannins, steroids, terpenoids.	Cardiopr otective, Aphrodis iac.	isoproteren ol-induced cardiotoxic ity in rats.	in combinati on with Dox to limit free radical- mediated heart injury. Trichopus zeylanicus leaves proved to be effective in reducing the extent of myocardia l damage, associated lipid peroxidati	[28]
12.	Bhuini mb/ Kalmeg h	Androgra phis paniculata	Acantha cea	Andrographo lide, diterpenoids, flavonoids, quinic acid, xanthones, noriridoids, and andrographid oids A, B, C, D, and E, crocetin, crocin,	Cardiopr otective, gastropro tective, antioxida nt.	isoproteren ol-induced cardiotoxic ity in rats.	peroxidati on, thus maintainin g, as suggested by biochemic al indices, the structure and function of the myocardiu m. The ethanolic leaf extract of A. paniculate was used to evaluate the cardioprot ective effect of this plant using its antioxidan	[29]

	1							· · · · ·
13.	Saffron	Crocus sativus	Iridacea e	Carotenoid compounds, crocetin, crocetin, glucoside picrocrocin, anthocyanins , delphinidin, petunidin.	Cardiopr otective, hypnotic, anxiolyti c, anticance r.	isoproteren ol-induced cardiotoxic ity in rats.	t properties as well as haemodya namic, histopatho logic and immunohi stochemic al changes. The present study showed that pretreatme nt with saffron reduced histopatho	[30]
							logical changes in heart tissue and decreased ck-mb and LDH activities in serum saffron and safranal also reduce lipid peroxidati on in heart tissue.	
14.	Katuka	Picrorhiza kurroa	Scrofula riaceae	Sterols, glycosides, phenolic compounds, cucurbitacins ((triterpenoid s), and iridoid glycosides.	Antioxid ant, anti- inflamma tory, and cardiopro tective.	isoproteren ol-induced cardiotoxic ity in rats.	The present study demonstra te the cardioprot ective effect of P. kurroa against ISP- induced myocardia 1 injury and	[31]

							validates	1
							the	
							traditional	
							claim.	
							However,	
							further	
							studies are	
							warranted	
							to support	
							its clinical	
							use in ischemic	
							heart	
							disease.	
15	Kokum	Consinio	Clusions	Cominal	Condiana	icommonalin		[20.2
15.	Kokum	Garcinia indica	Clusiace	Garcinol,	Cardiopr	isoprenalin	It may be	[32,3
		mulca	ae	isoxanthochy	otective, antibacter	e-induced cardiotoxic	concluded that	3]
				mol,	ial,	ity in rats.		
				xanthochym ol,		ity in rats.	garcina indica	
				oi, hydroxycitri	hepatopr otective,		extract to	
				c acid,	antioxida		ISO	
				phenolic	nt.		challenged	
				acids,	110.		rat	
				flavonoids,			augments	
				benzophenon			endogeno	
				es,			us	
				isogarcinol,			antioxidan	
				anthocyanins			t of rat	
				, and tannins.			heart,	
				, and taimins.			enhance	
							scavengin	
							g of free	
							radical	
							and inhibit	
							the lipid	
							peroxidati	
							on	
							membaran	
							e-, thereby	
							salvaging	
							the	
							myocardiu	
							m from	
							the	
							deleteriou	
							s of ISO.	
16.	Turmeri	Curcuma	Zingiber	Curcumin,	Cardiopr	Doxorubici	Curcuma	[34]
10.	c	longa	aceae	ar-	otective,	n-induced	longa	[1]
	Ĩ	longu	uccuc	turmerone,	anti-	cardiotoxic	extract	
				b-	inflamma	ity in rats.	renders	
				sesquiphella	tory,	ny miaus.	resiliency	
				ndrene,	antioxida		against	
				curcumenol,	nt.		doxorubici	
				sesquiterpen	110.		n	

Г								1	1
					es, and			cardiotoxi	
					phenolic			city due to	
					constituents.			their	
								contents	
								of	
								polypheno	
								lic	
								compound	
								that might	
								serve	
								novel	
								adjuvant	
								therapy	
								with	
								doxorubici	
								n.	
ţ	17.	Olive	Olea	Oleacea	Flavonoids,	Antidiabe	Doxorubici	Olea	[35]
	· / ·	0110	europaea	e	iridoids,	tic,	n-induced	europaea	[33]
			europaea	Č	secoiridoids,	anticance	cardiotoxic	extract	
					flavanones,	r,	ity in rats.	were	
					benzoic acid	antimicro		attributed	
					derivatives,	bial, and		mainly to	
					and	cardiopro		major	
					triterpene.	tective.		componen	
								ts	
								oleuropein	
								, phenolic	
								antioxidan	
								t	
								compound	
								is	
								effective	
								against	
								doxorubici	
								n	
								cardiotoxi	
								city	
								through	
								suppressio	
								n of	
								oxidative	
								and	
								nitrosative	
ļ	10	** **	****	<u> </u>				stress.	10.07
	18.	Winter	Withania	Solanac	Alkaloids,	Anti-	isoprenalin	W.	[36]
		cherry	somnifera	eae	steroids,	inflamma	e-induced	somnifera	
					glycosides,	ory,	cardiotoxic	leaves	
					hentriaconta	analgesic,	ity in rats.	have the	
					ne, dulcitol,	immuno		potential	
					withaniol,	modulant		to be used	
					withananine,			as	
					and	, antirhem		cardioprot	
					flavonoids.	atic, and		ective	
					mayonoius.	cardiopro		agents by	
				1	1			AVEINS DV	

				1	•		•	
					tective.		protecting	
							cardiac	
							tissue	
							against	
							oxidative	
							damage.	
19.	Garden	Allium	Alliacea	Flavonoids,	Cardiopr	isoprenalin	The	[37]
	onion	cepa	e	triterpenic	otective,	e-induced	aqueous	
		1		acids, amino	antibacter	cardiotoxic	extract of	
				acids,	ial,	ity in rats.	А.	
				steroids.	antioxida		cepa400m	
				steroras.	nt,		g/kg was	
					hypouric		found to	
					emic.		be	
					enne.			
							cardioprot	
							ective	
							against	
1							myocardia	
							l injury	
							while	
							A.cepa at	
							800mg/kg	
							did not	
							show	
							significant	
							cardioprot	
							ective	
							activity.	
							So, A.	
							cepa	
							might be	
							effective	
							within	
							certain	
							dose range	
							-	
20.	Hatkhor	Citrus	Rutacea	limonene	Cardionr	isopropalin	only. Both C.	[38]
20.				limonene,	Cardiopr	isoprenalin		[20]
1	a,Satkar	macropter	e	beta-	otective	e-induced	macropter	
	a, Shatlaan	а		caryophyllen	and	cardiotoxic	a peel and	
	Shatkor			e, y, α-	Hepatopr	ity in rats.	pulp	
	a,			pinene, β -	otective, .		extract	
	Hatxora			pinene,	Hypoglyc		conferred	
	,			myrcene, α-	emic,		significant	
	Cabuya			phellandrene	Antimicr		protection	
	0			, and γ -	obial,		against	
				terpinene	Antioxid		ISO-	
				monoterpene	ant,		induced	
				specially γ -	Neuropha		MI in rats	
				elemene,	rmacolog		although	
				linalool,	ical.		the peel	
				terpinen-4-	-		extract	
				ol, α -			was	
				terpineol,			superior.	
1	1	1	1	terpineoi,		1		
				terpinolene,			The	

	n	r	n	1	1			
				and geranyl			possible	
1				acetate,			mechanis	
				polyphenols,			ms	
				flavonoids.			underlying	
							these	
							effect	
							include	
							modulatio	
							n of the	
							levels of	
							lipids and	
							lipoprotei	
							n and	
							improvem	
							ent of the	
							endogeno	
							us	
							antioxidan	
							t enzyme	
1							system via	
							inhibition	
							of lipid	
							peroxidati	
							on, The	
							biochemic	
							al finding	
							were	
							further	
							confirmed	
							by	
							histopatho	
							logical	
							examinati	
							on.	
21.	Chambe	Phyllanth	Phyllant	lignans,		Doxorubici	This study	[39]
1	r	us urinaria	haceae	tannins,	anticance	n-induced	suggests	
	Bitter,			flavonoids,	r,	cardiotoxic	that PU	
	Gripwe			phenolics,	hepatopr	ity in rats.	extract	
	ed,			terpenoids,	otective,	-	may serve	
1	Shatters			and other	antidiabet		as an	
1	tone			secondary	ic,		alternative	
				metabolites.	antimicro		oxidant	
1					bial, and		for	
1					cardiopro		prevention	
					tective.		of DOX	
1					iccuve.		cadiotoxic	
							ity. Eventh on	
							Further	
							studies	
							should	
							identify	
1							the active	
							constituen	
							ts of PU	
L				•	i		i	

	1	1		Γ	[[
							for pharmacol ogic evaluation and potential ROS- related therapeuti c implicatio n.	
22.	Water hyssop, Brahmi, Herb grass, Indian pennyw ort	Bacopa monnieri	Scrophu lariacea e	Alkaloids brahmine,nic otine,bacosid eA and B,Saponins A,Band C, triterpenoid saponins, glutamic acid, betulinic acid, stigmasterol.	Anxiety, epilepsy, Antidepr essant, Anxiolyti cs, anticonvu lsant,Anti microbial , Analgesi c, Anti- inflamma tory, cardiopro tective.	Myocardia l ischemia/r eperfusion injury in rats.	Bacopa monnieri improve myocardia l function following ischemia/p erfusion injury through recovery of coronary blood flow, contractile force and decrease in infract size. Thus this may leads to novel cardioprot ectant strategy.	[40]
23.	Cactus	cactus grandiflor us	Cactace ae	Alkaloids, Flavonoids, phenolic, sterols, saponins, carbohydrate s, Protein, amino acids, tannins,poly phenols.	Antimicr obial, Antitumo rigenic, Diabetes, Angina pectoris, heart weakness , Antihype rtensive.	Doxorubici n-induced cardiotoxic ity in rats.	In the present study, doxorubici n alone treatment to a great extent reduced the levels of antioxidati ve enzymes i.e. SOD and CAT.	[41]

24.	Neem tree	Azadirach ta indica	Meliace	Reducing sugar, tannins, flavonoids.	Cardiopr otective, chemopre ventive.	isoprenalin e-induced cardiotoxic ity in rats.	Treatment with Cactus grandiflor us mother tincture can improve the deficient antioxidan t status of heart. This preparatio n also has no deleteriou s effect on liver and kidney in both doses. Its beneficial effect in doxorubici n cancer therapy should be evaluated in further studies.	[42]
				flavonoids, steroids, terpenoids, glycosides, and alkaloid.	ventive, antiplasm odial, anti- inflamma tory	ity in rats.	cardioprot ective effect of Azadiricta indica A Juss. Leaf extract was found to be most effective in the functional recovery of the heart and restoration of biochemic al and histopatho	

							logical	
							alteration.	
25.	Malabar	Syzygium	Myrtace	Anthocyanin	Antidiabe	Doxorubici	The result	[43]
	plum,	cumini	ae	s, ellagic	tic,	n-induced	show that	
	Java			acid,	antioxida	cardiotoxic	syzygium	
	plum,			glucoside,	nt, and	ity in rats.	cumini	
	Black			kaemferol	cardiopro		seed have	
	plum			isoquercetin,	tective.		potent	
				alkaloids,			antioxidan	
				myrecetin,			t as well	
				glycosides,			as	
				and			cardioprot	
				jambosin.			ective	
							activity. A	
							further	
							research	
							on .	
							syzygium	
							cumini seed	
							against doxorubici	
							n induced	
							rat in	
							progress.	
26.	Hairy	Ficus	Moracea	Alkaloids,	Cardiopr	Doxorubici	Doxorubic	[44]
-0.	fig	hispida	e	terpenes,	otective,	n-induced	in	[]
	8	F		saponins,	antipyreti	cardiotoxic	exposure	
				glycosides,	c,	ity in rats.	result in	
				mucilage,	hepatopr	2	pronounce	
				gums,	otective,		d	
				flavonoids,	anti-		oxidative	
				phenols,	inflamma		stress and	
				sterols,	tory		administra	
				amino acids,			tion of	
				b-amyrine			ficus	
				acetate,			racemose	
				protein,			stem bark	
				carbohydrate			extract	
				s, n-			protects	
1				triacontanol,			the heart	
				lupeol			by	
1				acetate, b- sitosterol			scavengin g free	
				3110310101			g free radicals.	
27.	African	Spathodea	Bignoni	Saponin,	Antimala	isoproteren	The	[45]
27.	tulip	campanul	aceae	flavonoids,	rial, anti-	ol-induced	present	ניין
	tree	ata	accut	steroid,	HIV,	cardiotoxic	study	
1				alkaloids,	hypoglyc	ity in rats.	clearly	
				glycoside,	emic,	-,	showed	
1				tannin,	cardiopro		EEBSC	
				phenol,	tective.		modulated	
				phlobatanin,			most of	
				terpenoids,			the	
L	I	1	I	1		ı		

28.	Markin g nut	Semecarp us anacardiu m	Anacard iaceae	and anthraquinon Bhilwanols, phenolic compounds, biflavonoids, sterols, glycosides, ursuhenol, anacardoside , semecarpetin , nallaflavano ne, semecarpufla vanone.	Cardiopr otective, antioxida nt, anticance r, antidiabet ic.	isoproteren ol-induced cardiotoxic ity in rats.	biochemic al and histopatho logical indicators which were maintaine d to normal status in isoprotere nol rats, suggesting the beneficial action of EEBSC as a cardioprot ective agent. The present study it may concluded that the both the high dose low dose posseses good cardioprot ective against isoprotere nol induced myocardia l necrosis in rats, also elucidate the active constituen ts responsibl e for the said effect with extensive	[46]
-----	-----------------	----------------------------------	-------------------	--	---	--	--	------

International Journal of Pharmaceutical Research and Applications Volume 6, Issue 3 May - June 2021, pp: 460-480 www.ijprajournal.com ISSN: 2249-7781

		of histopatho logical and ultra structural changes.
--	--	--

II. CONCLUSION

Presently there is an increasing interest worldwide in herbal medicines accompanied with increased laboratory investigations into the pharmacological properties of the bioactive ingredients and their ability to treat various diseases. The present review has accentuate on the effects of cardiovascular disease. the cardioprotective phytoconstituents present in the plants, the various biochemical estimations and several in-vitro, in-vivo and human studies carried out in the papers .The brief survey of literature evidences us that the traditional medicinal plants have no known side effects and the presence of cardioprotective bioactive compounds in plant extracts.

REFRENCES:

- Shah SM, Akram M, Riaz M, Munir N, Rasool G. Cardioprotective potential of plant-derived molecules: a scientific and medicinal approach. Dose-response. 2019 May 24:17(2):1559325819852243.
- [2]. Kübler W, Haass M. Cardioprotection: definition, classification, and fundamental principles. Heart. 1996 Apr;75(4):330.
- [3]. Vidyarthi S, Samant SS, Sharma P. Traditional and indigenous uses of medicinal plants by local residents in Himachal Pradesh, North Western Himalaya, India. International Journal of Biodiversity Science, Ecosystem Services & Management. 2013 Sep 1;9(3):185-200.
- [4]. Wang CZ, Mehendale SR, Yuan CS. Commonly used antioxidant botanicals: active constituents and their potential role in cardiovascular illness. The American journal of Chinese medicine. 2007;35(04):543-58.
- [5]. Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacological research. 2013 Feb 1;68(1):125-31.
- [6]. Souri E, Amin G, Farsam H, Barazandeh TM. Screening of antioxidant activity and phenolic content of 24 medicinal plant extracts.

- [7]. Zafar F, Jahan N, Khan A, Akram W. Cardioprotective potential of polyphenolic rich green combination in catecholamine induced myocardial necrosis in rabbits. Evidence-Based Complementary and Alternative Medicine. 2015 Jan 1;2015.
- [8]. Kumar SV, Saritha G, Fareedullah MD. Role of antioxidants and oxidative stress in cardiovascular diseases. Annals of Biological Research. 2010;1(3):158-73.
- [9]. Sharma M, Kishore K, Gupta SK, Joshi S, Arya DS. Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats. Molecular and cellular biochemistry. 2001 Sep;225(1):75-83.
- [10]. Pandey G, Madhuri S. Pharmacological activities of Ocimum sanctum (tulsi): a review. Int J Pharm Sci Rev Res. 2010 Nov;5(1):61-6.
- [11]. Parveen A, Babbar R, Agarwal S, Kotwani A, Fahim M. Mechanistic clues in the cardioprotective effect of Terminalia arjuna bark extract in isoproterenol-induced chronic heart failure in rats. Cardiovascular Toxicology. 2011 Mar;11(1):48-57.
- [12]. Mandal S, Patra A, Samanta A, Roy S, Mandal A, Mahapatra TD, Pradhan S, Das K, Nandi DK. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pacific journal of tropical biomedicine. 2013 Dec 1;3(12):960-6.
- [13]. Khaliq F, Fahim M. Role of terminalia arjuna in improving cardiovascular functions: A review. Indian Journal of Physiology and Pharmacology. 2018;62(1):8-19.
- [14]. Neha K, Lubna A. Evaluation of cardio protective effect of tinospora cordifolia against isoprenaline induced myocardial infarction in rats. Int. J. Curr. Microbiol. App. Sci. 2014;3(3):543-55.
- [15]. Sharma AK, Kishore K, Sharma D, Srinivasan BP, Agarwal SS, Sharma A, Singh SK, Gaur S, Jatav VS.

Cardioprotective activity of alcoholic extract of Tinospora cordifolia (Willd.) Miers in calcium chloride-induced cardiac arrhythmia in rats. Journal of biomedical research. 2011 Jul 1;25(4):280-6.

- [16]. Reddy NM, Reddy RN. Tinospora cordifolia chemical constituents and medicinal properties: a review. Sch Acad J Pharm. 2015;4(8):364-9.
- [17]. Ojha S, Golechha M, Kumari S, Arya DS. Protective effect of Emblica officinalis (amla) on isoproterenol-induced cardiotoxicity in rats. Toxicology and Industrial Health. 2012 Jun;28(5):399-411.
- [18]. Khan KH. Roles of Emblica officinalis in medicine-A review. Bot Res Int. 2009;2(4):218-28.
- [19]. Gayathri V, Ananthi S, Chandronitha C, Ramakrishnan G, Sundaram RL, Vasanthi HR. Cardioprotective effect of Nerium oleander flower against isoproterenolinduced myocardial oxidative stress in experimental rats. Journal of cardiovascular pharmacology and therapeutics. 2011 Mar;16(1):96-104.
- [20]. Ebrahimi F, Ghorbani Nohooji M, Miri SM. Agronomic and pharmacological aspects of Nerium oleander: an important medicinal plant. InThe First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes 2018 Oct (pp. 9-11).
- [21]. Reyad-ul-Ferdous M, Shahjahan DS, Tanvir S, Mukti M. Present biological status of potential medicinal plant of amaranthus viridis: a comprehensive review. Am J Clin Exp Med. 2015;3:12-7.
- [22]. Panda S, Kar A, Ramamurthy V. Cardioprotective effect of vincristine on isoproterenol-induced myocardial necrosis in rats. European journal of pharmacology. 2014 Jan 15;723:451-8.
- [23]. Panda VS, Naik SR. Cardioprotective effect of a chronic treatment of Ginkgo biloba Phytosomes in isoproterenol-induced cardiac necrosis in rats: Involvement of antioxidant system. J Phytopharmacol. 2014;3:222-3.
- [24]. Budin SB, Sharifuddin NA, Jubaidi FF, Zainalabidin S. The potential of Hibiscus sabdariffa Linn.(roselle) polyphenol-rich extract as a cardioprotective agent in myocardial infarction model. Jurnal Teknologi. 2019 Aug 19;81(5).

- [25]. Riaz G, Chopra R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy. 2018 Jun 1;102:575-86.
- [26]. Hassanpour Fard M, Ghule AE, Bodhankar SL, Dikshit M. Cardioprotective effect of whole fruit extract of pomegranate on doxorubicin-induced toxicity in rat. Pharmaceutical Biology. 2011 Apr 1;49(4):377-82.
- [27]. Nadia Noble-Daoud Aniss, Yasser H. Abdel Rahman, Asmaa M. Zaazaa1*, Cardioprotective Effect of Moringa Oleifera Against Doxorubicin Cardiotoxicity in Leukemia Rat Model. International Journal of Pharmaceutical and Phytopharmacological Research. April 2020 | Volume 10| Issue 2| Page 148-161.
- [28]. Velavan S, Selvarani S, Adhithan A. Cardioprotective effect of Trichopus zeylanicus against myocardial ischemia induced by isoproterenol in rats. ||| Bangladesh Journal of Pharmacology|||. 2009;4(2):88-91.
- [29]. Adedapo AD, Adedapo AA, Ayodele AE, Adeoye BO, Ajibade TO, Oyagbemi AA, Omobowale TO, Yakubu MA. Cardioprotective effects and antioxidant status of Andrographis paniculata in isoproterenol-induced myocardial infarction in rats. Journal of Medicinal Plants for Economic Development. 2019 Jan 1;3(1):1-2.
- [30]. Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iranian journal of basic medical sciences. 2013 Jan;16(1):56.
- [31] Nandave M, Ojha SK, Kumari S, Nag TC, Mehra R, Narang R, Arya DS. Cardioprotective effect of root extract of Picrorhiza kurroa (Royle Ex Benth) against isoproterenol-induced cardiotoxicity in rats.
- [32]. Panda V, Kamble S, Desai Y, Sudhamani S. Antioxidant and cardioprotective effects of Garcinia indica (kokoberry), an Indian super fruit in isoproterenol induced myocardial necrosis in rats. Journal of berry research. 2014 Jan 1;4(3):159-74.
- [33]. Ranveer RC, Sahoo AK. Bioactive constituents of Kokum and its potential health benefits. Nutrition and Food Toxicology. 2017;1(6):236-44.

- [34]. El-Sayed EM, Abd El-azeem AS, Afify AA, Shabana MH, Ahmed HH. Cardioprotective effects of Curcuma longa L. extracts against doxorubicin-induced cardiotoxicity in rats. Journal of Medicinal Plants Research. 2011 Sep 9;5(17):4049-58.
- [35]. Ashour OM, Abdel-Naim AB, Abdallah HM, Nagy AA, Mohamadin AM, Abdel-Sattar EA. Evaluation of the potential cardioprotective activity of some Saudi plants against doxorubicin toxicity. Zeitschrift für Naturforschung C. 2012 Jun 1;67(5-6):297-307.
- [36]. Khalil M, Ahmmed I, Ahmed R, Tanvir EM, Afroz R, Paul S, Gan SH, Alam N. Amelioration of isoproterenol-induced oxidative damage in rat myocardium by Withania somnifera leaf extract. BioMed research international. 2015 Oct 11;2015.
- [37]. Kharadi GB, Patel KJ, Purohit BM, Baxi SN, Tripathi CB. Evaluation of cardioprotective effect of aqueous extract of Allium cepa Linn. bulb on isoprenalineinduced myocardial injury in Wistar albino rats. Research in pharmaceutical sciences. 2016 Oct;11(5):419.
- [38]. Paul S, Das S, Tanvir EM, Hossen MS, Saha M, Afroz R, Islam MA, Hossain MS, Gan SH, Khalil MI. Protective effects of ethanolic peel and pulp extracts of Citrus macroptera fruit against isoproterenol-induced myocardial infarction in rats. Biomedicine & Pharmacotherapy. 2017 Oct 1;94:256-64.
- [39]. Chularojmontri L, Wattanapitayakul SK, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Srichairat S. Antioxidative and cardioprotective effects of Phyllanthus urinaria L. on doxorubicin-induced cardiotoxicity. Biological and Pharmaceutical Bulletin. 2005;28(7):1165-71.
- [40]. Srimachai S, Devaux S, Demougeot C, Kumphune S, Ullrich ND, Niggli E, Ingkaninan K, Kamkaew N, Scholfield CN, Tapechum S, Chootip K. Bacopa monnieri extract increases rat coronary flow and protects against myocardial ischemia/reperfusion injury. BMC complementary and alternative medicine. 2017 Dec;17(1):1-0.
- [41]. Verma RK, Haque SE, Pillai KK. Cactus grandiflorus, a homeopathic preparation has protective effect against doxorubicin

induced cardiomyopathy in rats. International Journal of Phytopharmacology. 2012;3(3):281-90.

- [42]. Peer PA, Trivedi PC, Nigade PB, Ghaisas MM, Deshpande AD. Cardioprotective effect of Azadirachta indica A. Juss. on isoprenaline induced myocardial infarction in rats. International journal of cardiology. 2008 May 7;126(1):123-6.
- [43]. Soncharan P, Shanmugarajan TS, Somasundaram NM, Niladri M. Protective effect of Syzygium cumini seeds against doxorubicin induced cardiotoxicity in rats. Int J Phar Life Sci. 2010;6:343-9.
- [44]. Ahmed F, Urooj A. Cardioprotective activity of standardized extract of Ficus racemosa stem bark against doxorubicin-induced toxicity. Pharmaceutical biology. 2012 Apr 1;50(4):468-73.
- [45]. Abubaker S, Shanmukha I, Jyoti TM, Gupt K. Cardioprotective effect of Spathodea campanulata bark on isoproterenol-induced myocardial infarction in rats. Asian Pacif.
- [46]. Asdaq SM, Chakraborty M. Myocardial potency of Semecarpus anacardium nut extract against isoproterenol induced myocardial damage in rats. International Journal of Pharmaceutical Sciences Review and Research. 2010;2(2):10-3.